
Class 26, given on March 3, 2010, for Math 13, Winter 2010

Let’s do an example where we verify Stokes’ Theorem, by calculating a surface integral
of ∇× F as well as the line integral of F along its boundary.

Example. (Chapter 17.8, Problem #14) Verify Stokes’ Theorem for F = 〈x, y, xyz〉, S the
part of the plane 2x+ y + z = 2 which lies in the first octant, with upward orientation.

We first need to determine the orientation S induces on its boundary C. The surface S
is a triangle with vertices (1, 0, 0), (0, 2, 0), (0, 0, 2), and the right hand rule shows that C
has orientation given by going from (1, 0, 0) to (0, 2, 0) to (0, 0, 2) and then back to (1, 0, 0).

We’ll start by calculating the line integral of F along C. To do this, we need to break
up F into three parts, which we’ll call C1, C2, and C3. C1 will be the path from (0, 0, 2) to
(1, 0, 0), and C2, C3 will be the paths which follow.

We can parameterize C1 using r(t) = 〈t, 0, 2− 2t〉, 0 ≤ t ≤ 1. Therefore, the line integral
of F along C1 is ∫

C1

F · dr =
∫ 1

0
〈t, 0, 0〉 · 〈1, 0,−2〉 dt =

∫ 1

0
t dt =

1
2
.

We can parameterize C2 using r(t) = 〈1− t, 2t, 0〉, 0 ≤ t ≤ 1. Therefore, the line integral
of F along C2 is

∫
C2

F · dr =
∫ 1

0
〈1− t, 2t, 0〉 · 〈−1, 2, 0〉 dt =

∫ 1

0
t− 1 + 4t dt =

∫ 1

0
5t− 1 dt =

3
2
.

We can parameterize C3 using r(t) = 〈0, 2−2t, 2t〉, 0 ≤ t ≤ 1. Therefore, the line integral
of F along C3 is∫

C3

F · dr =
∫ 1

0
〈0, 2− 2t, 0〉 · 〈0,−2, 2〉 dt =

∫ 1

0
4t− 4 dt = 2− 4 = −2.

The sum of these three line integrals is equal to 0.
Stokes’ Theorem tells us that∫

C
F · dr =

∫∫
S

∇× F · dS,

so we want to now evaluate the right-hand side and check that it equals what we computed
for the left-hand side, which was 0. We’ll begin by computing ∇× F:

∇× F =

∣∣∣∣∣∣
i j k
∂x ∂y ∂z

x y xyz

∣∣∣∣∣∣ = 〈xz,−yz, 0〉.

Since S is the graph of z = 2−2x−y over the region D in the xy plane given by inequalities
0 ≤ x ≤ 1, 0 ≤ y ≤ 2− 2x, we can parameterize S as follows:

r(u, v) = 〈u, v, 2− 2u− v〉, 0 ≤ u ≤ 1, 0 ≤ v ≤ 2− 2u.

In particular, for this choice of r, the fundamental vector product ru × rv equals

ru × rv =

∣∣∣∣∣∣
i j k
1 0 −2
0 1 −1

∣∣∣∣∣∣ = 〈2, 1, 1〉.

1



2

This points in the same direction as the orientation for S so we do not need to change the
sign of our final answer.

The surface integral we want to compute is equal to∫∫
S

∇× F · n dS =
∫∫
D

∇× F · ru × rv dA.

The integrand is equal to

∇×F·ru×rv = 〈xz,−yz, 0〉·211 = 2xz−yz = z(2x−y) = (2−2x−y)(2x−y) = (2−2u−v)(2u−v).

Therefore, we want to evaluate the double integral∫∫
D

(2−2u−v)(2u−v) dA =
∫∫
D

4u−2v−4u2+2uv−2uv+v2 dA =
∫∫
D

4u−4u2−2v+v2 dA.

As an iterated integral, this equals

∫ 1

0

∫ 2−2u

0
(4u− 4u2)− 2v + v2 dv du =

∫ 1

0
(4u− 4u2)(2− 2u)− (2− 2u)2 +

(2− 2u)3

3
du.

At this point to calculate this integral we ‘only’ need to expand out every term in the
integrand, which is a polynomial in u, and integrate as usual. We make a slight shortcut
by only expanding out the leftmost term and leaving the other terms as is:

∫ 1

0
8u−16u2+8u3−4(1−u)2+

8(1− u)3

3
du = 4u2−16u3

3
+2u4+

4(1− u)3

3
−2(1− u)4

3

∣∣∣1
0

= 4−16
3

+2+
−4
3

+
2
3

= 0.

After all these calculations we get 0, just as expected!

If it seems difficult to use Stokes’ Theorem for calculations, this is more than made up for
by the fact that Stokes’ Theorem has great theoretical significance. In the above example,
notice that F is C1 on R3, and ∇× F = 0. Recall that this means that F is conservative
on R3; as a matter of fact, f(x, y, z) = x sin y + xez is a potential function for F. If we
knew this, we could have obtained the above result using the fact that the line integral of
a conservative vector field around any closed path equals 0.

This seems to make even the above application of Stokes’ Theorem obsolete, but it turns
out that Stokes’ Theorem is used to prove the fact that ∇×F = 0 on R3 (or more generally,
any simply connected region in R3) implies that F is conservative!

Examples. (Three theoretical applications of Stokes’ Theorem)
• We want to use Stokes’ Theorem to show that if ∇ × F = 0 for a C1 vector field

F on a simply-connected region D in R3, then F is conservative on D. Let C be
any closed path contained in D; because D is simply connected it is possible to find
a surface S which lies entirely in D whose boundary is C. Then Stokes’ Theorem
applied to this choice of S,C gives∫

C
F · dr =

∫∫
S

∇× F · dS =
∫∫
S

0 dS = 0.

That D is simply connected is needed to ensure that we can find a surface S entirely
contained in D whose boundary is C. For example, if D is instead a solid torus
(literally, in the shape of a donut), then one can check thatD is not simply connected
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– for example, a circle wrapped once around the inner ring of the solid torus cannot
be continually deformed to a point. If you think of various surfaces S with this
circle C as boundary, you will find that every choice of S which you can think of
will have to leave D somewhere, and therefore you will be unable to apply Stokes’
Theorem to C since you cannot find S for which you know ∇×F = 0 over all of S.
(For proofs of these topological facts, you will want to take a course in topology.)
• Stokes’ Theorem can be used to prove Green’s Theorem. Recall the statement of

Green’s Theorem: if C is a simple closed curve in R2 with positive orientation, D
is the interior of C, and F = 〈P,Q〉 is a C1 vector field on D, then∫

C
P dx+Qdy =

∫∫
D

Qx − Py dA.

To apply Stokes’ Theorem to this setup, we embed this copy of R2 into R3 by
declaring it to have z coordinate 0; i.e., we call this copy of R2 the xy plane. We
can then think of S as D, with upward pointing orientation (to ensure that the
induced orientation is the positive orientation on C), and F = 〈P,Q, 0〉 as a vector
field defined on S. In particular, n = 〈0, 0, 1〉. Thinking of F as now being a vector
field in R3, we can compute ∇× F:

∇× F =

∣∣∣∣∣∣
i j k
∂x ∂y ∂z

P Q 0

∣∣∣∣∣∣ = (Qx − Py)k.

(We use the fact that P,Q are functions only of x, y, so that Pz = Qz = 0.)
Therefore, Stokes’ Theorem applied to S = D and C gives∫

C
P dx+Qdy =

∫∫
S

∇× F · n dS =
∫∫
D

Qx − Py dA.

Stokes’ Theorem is powerful indeed if it contains Green’s Theorem as a special case!
• Much like how we used the Divergence Theorem to formalize the notion of ∇ ·F as

measuring the divergence of a point, we can use Stokes’ Theorem to formalize the
idea of curl as measuring the rotational tendency of a vector field at a point.

If we are interested in the value of∇×F at a point P , let S be a small circular disc
of raidus r centered at P with unit normal everywhere given by a vector pointing
in the same direction as ∇ × F. Because r is small, the value of ∇ × F across S
is well approximated by ∇× F(P ). Then the surface integral of ∇× F across S is
approximated by∫∫

S

∇× F · n dS ≈
∫∫
S

|∇ × F(P )| dS = |∇ × F(P )|πr2.

On the other hand, if C is the boundary of S, then Stokes’ Theorem tells us the
above surface integral also equals∫

C
F · dr =

∫∫
S

∇× F · n dS ≈ |∇ × F(P )|πr2.

Therefore, ∇× F(P ) is approximately equal to

∇× F(P ) ≈ 1
πr2

∫
C

F · dr.
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This approximation is accurate in the limit; that is, as r → 0 the above approxi-
mation becomes an equality. The line integral on the right can be thought of as a
measure of the rotational tendency of the vector field F in a plane orthogonal to
∇× F(P ).

There is a sometimes a clever way of using Stokes’ Theorem to simplify the calculation of
surface integrals. First, we will use the fact (not proven in this class) that if a C1 vector field
F on R3 satisfies ∇ ·F = 0, then there exists another vector field G such that ∇×G = F.

Suppose we are asked to evaluate the surface integral of such a vector field F across
a surface S1. It may happen that S1 is very complicated, but that we can find another,
simpler surface S2 with identical boundary curve C. Then Stokes’ Theorem tells us∫∫

S1

F · dS =
∫∫
S1

∇×G · n dS =
∫

C
G · dr =

∫∫
S2

∇×G · n dS =
∫∫
S2

F · dS.

That is, the value of the surface integral of F is independent of the choice of surface S, as
long as all surfaces have the same boundary curve.

Example. Let F = 〈−2x, y, z〉, and let S1 be the hemisphere x2 + y2 = 1, z ≥ 0 with
radially outward pointing orientation. Evaluate the integral of F across S1.

Directly calculating this integral would be annoying since we would have to use spherical
coordinates to parameterize S1. First, we check that∇·F = −2+1+1 = 0, and of course F is
C1 on R3. S1 induces the counterclockwise orientation on its boundary x2 + y2 = 1, z = 0.
We let S2 be the unit disc x2 + y2 ≤ 1, z = 0 with upward pointing orientation; then
one immediately sees that S2 induces the same orientation on C as S1. Then the above
discussion tells us that we can replace the evaluation of the integral across S1 with evaluation
of the integral across S2, which is geometrically much simpler. As a matter of fact, since
n = 〈0, 0, 1〉 on S2, on S2 we have

F · n = 〈−2x, y, z〉 · 〈0, 0, 1〉 = z = 0.
Therefore, we will be integrating the 0 function on S2, so the value of the surface integral
of F along either S1 or S2 is equal to 0.

If you remember how we used the Divergence Theorem, though, you will notice that we
already had a method of reducing the evaluation of the integral across S1 to the surface
S2. Since S1 and S2 together bound a solid E, we can apply the Divergence Theorem to E,
and since ∇·E = 0, the Divergence Theorem also tells us that the integral across S1, S2 are
equal to each other. Nevertheless, this shows how there seems to be a subtle relationship
between Stokes’ Theorem and the Divergence Theorem, despite the fact that they seem to
be somewhat different from each other.


